
DynamoDB
A view under the hood

Summary
- Features
- Key Concepts
- Data Plane

- GET/PUT
- Replication details
- Storage Node details
- Provisioned Throughput

- Control Plane
- Health Checks
- Create Table & Partition
- Partition Split
- Balancing

Features
Large Scale

Predictable Performance

Managed DB

Strong Consistency

Atomic Operations

Key Concepts
tables, items, and attributes;

primary keys;

read and write capacity;

secondary indexes, (local and global);

Tables, Items, Attributes

GET/PUT
Request-Router

Find servers that host partition for this table & key

Storage-Node

Find Storage Manager hosting partition

Admission Control

Execute Request

Finding the Partition
System Tables (some of them):

Tables (H:User-Id, R:TableName) - Table-Id, IOPS, State, ...

Partitions (H: Table-Id, R:Starting-Primary-Key) - Partition-Id, ReplicaSet, ...

Nodes (H: AvailabilityZone-Type, R: Node-Id) - IPaddr, CapacityIOPS, ...

Tasks (H: Type/State, R: Task-Type-Specific) - liveness, owner, ...

Finding the Partition
Request Router Steps:

Query(Tables, …) [cacheable]

Query(Partitions, …) [cacheable]

Select Node Order for Replica-Set [master hint]

Resp = IssueRequest(StorageNode, Req)

Resp can invalidate/update cache and we start again

PUT on the ReplicaSet
Multi-Paxos implementation

Only leader accepts PUT (or ConsistentGet) requests

only ACKs to RR after AvailabilityZone-aware quorum write of PUT on repl log.

Append Acks from remaining members are implicit leader-re-elections

Possible delay between what replication log holds and what is applied

PUT on the ReplicaSet
Applying the replication log to the StorageManager requires an additional LSN.

Replication heartbeat information contains node-ID, partition-ID, apply-LSN,
append-LSN, IOPS-free, ...

Heartbeat information is piggybacked on append-acks.

If replicaSet is idle, heartbeats still flow through..

Heartbeats are de-multiplexed to reduce network-chatter between node-pairs that
have common replica-sets.

ReplicaSets
ReplicaSet data is versioned.

Authoritative ReplicaSet information is part of the partition and replication log data.

ReplicaSet changes are metadata-PUTs on the partition. After that leader updates
Metadata tables as an “anti-entropy” strategy.

Membership changes are internal requests issued to the partition leaders. (ie
AddReplica, RemoveReplica, ...)

Storage Node
+12 SSD drives

Isolation of OS + application stack + debug logs on single SSD

Deep integration of OS cache, InnoDB, App. stack (design for 1 seek per req)

Bin-packing partitions onto volumes using IOPS + disk-space

In 2011 the P99.9 latency of SSDs wasn’t good enough to do RAID0 w/ all drives

We had to “shard” the SN into 5 volumes

Provisioned Throughput
This requires extreme stability in the distribution of load across two dimensions:

- Key-space
- Time

This lead to the addition of “Bursting” to DynamoDB, going away from
“Provisioned IOPS”.

Can StorageNodes “Burst” IOPS and maintain “predictable performance” ?

.. predictable performance & variable workloads is still innovation space

AutoAdmin Fleet
AutoAdmin Nodes handle:

Control Plane operations (create/delete table/partition, create index..)

Automated management of the health of the fleet

AutoAdmin Nodes act on events

Events are created for all major operations (create table, AddReplica, ...)

System evolves and new event types are created to increase automation

HEALTH CHECKS
The whole deployment is deep health checked

AutoAdmin nodes elect a leader that:

- Assigns nodes table ranges for health-checks to remaining AutoAdmin nodes
- Health-Checks AutoAdmin nodes

On health-check failures, “heal” events are created on “events” table

Create Partition
- Create table
- Partition split

- change in table provisioned throughput
- Partition is too large

Candidate Storage Nodes to host a partition must be selected based on:

- Availability Zone
- Available IOPS
- Available disk space

2D live bin-packing problem, choose best from random subset of nodes.

Partition Split
Partition split is re-sharding:

- Key-space divided evenly among child partitions
- IOPS divided evenly also

ReplicaSet metadata-operations:

- AddMember
- Split (leader decides the child ReplicaSets, writes into replication log)
- ReplicaSet commits harakiri upon processing Split operations

- Spawns new ReplicaSets, that inherit the rep log & BTree
- Further maintenance operations to effectively release physical space

Balancing
Things to balance:

- Storage Space, as partitions grow or split
- Storage IOPS, as partitions grow or split

- AddMember (which contains Storage Node selection) holds the allocation logic

- Leaders: ideally, each node should be leader of ⅓ of the ReplicaSets
- TCP Connections per Availability Zone and per RequestRouter
- Metadata Server requests to ask about health/balancing.

- Nodes report back their “wishes”

- Bugs on Emergent Behaviour..

